Ejercicio 1
\[- (-3x - 2) = - ( -3x - 2 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[- (2x - 4) = ( 3x - 16 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[(-x - 4) = ( -3x - 10 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[5 ( 3x + 4 ) = 3 ( 4x - 4 ) + 50\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[3 ( 3x + 2 ) = 5 ( x - 3 ) + 5\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[-1 ( 3x - 4 ) = -3 ( 4x + 6 ) + 58\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 7
\[\frac{-1}{4} ( \frac{1}{3}x + \frac{5}{4} ) = -1 ( x + 1 ) + \frac{121}{240}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 8
\[\frac{1}{4} ( \frac{3}{5}x - \frac{2}{5} ) = 1 ( \frac{1}{3}x - 1 ) + \frac{97}{120}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 9
\[2 ( \frac{5}{4}x - 5 ) = \frac{-4}{5} ( 2x - 1 ) - \frac{149}{10}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]