Ejercicio 1
\[- (-2x - 3) = - ( 5x + 34 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[(2x + 3) = ( -x - 0 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[(2x + 4) = - ( 3x + 10 )\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[2 ( 4x + 3 ) = -4 ( 4x - 4 ) + 110\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[-3 ( 5x - 3 ) = 3 ( 6x + 6 ) - 108\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[1 ( -2x - 1 ) = 6 ( 2x - 4 ) + 37\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 7
\[\frac{2}{3} ( \frac{-1}{2}x - 2 ) = \frac{1}{2} ( x - \frac{1}{2} ) - \frac{7}{3}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 8
\[\frac{-1}{4} ( \frac{2}{5}x - \frac{3}{5} ) = -3 ( -2x - 2 ) - \frac{483}{20}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 9
\[\frac{-3}{5} ( \frac{-3}{5}x + 1 ) = \frac{3}{2} ( \frac{1}{3}x - \frac{1}{2} ) + \frac{89}{500}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]