Resumen
Ejercicio 1
\[x^2 = 25\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[x^2 = 1\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[5(x^2 + 1) = \frac{485}{16}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[4(x^2 + 1) = \frac{41}{4}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[5(x^2 + 1) = \frac{425}{4}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[-3x^2 + 4x + 95=0\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x = \boxed{\phantom{\rule{2em}{1.2em}}}\]