Resumen
Ejercicio 1
\[x^2 = 9\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[x^2 + 1 = \frac{85}{4}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[2(x^2 + 1) = 10\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[3(x^2 + 1) = 78\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[( x + 6 ) ( x + 1 ) = 0\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[( x - 12 ) ( x - 5 ) = 0\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]
\[x=\boxed{\phantom{\rule{2em}{1.2em}}}\]