Ejercicio 1
\[\log_{4}(4^{-3}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 2
\[\log_{7}(7^{-1}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 3
\[\log_{6}(6^{3}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 4
\[\log_{8}(8^{-2}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 5
\[\log_{8} (64) = \log_8\left(8^\boxed{\phantom{\rule{2em}{1.2em}}}\right) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 6
\[\log_{6} (1) = \log_{6} (6^0) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 7
\[\log_{7} (1) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 8
\[\log_{12} (1) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 9
\[\log_{2} (2^{x^{2}}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 10
\[\log_{2} (2^{x^{10}+11}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 11
\[\log_{2} (2^{x^{10}*11}) = \boxed{\phantom{\rule{2em}{1.2em}}}\]
Ejercicio 12
\[\log_{2} (2^{x^{10}}*2) = \boxed{\phantom{\rule{2em}{1.2em}}}\]