Solución 1
\[x^2 = 4\]
\[x=\boxed{-2, 2}\]
Solución 2
\[x^2 = 9\]
\[x=\boxed{-3, 3}\]
Solución 3
\[x^2 = 25\]
\[x=\boxed{-5, 5}\]
Solución 4
\[x^2 = \frac{9}{16}\]
\[x=\boxed{\frac{-3}{4}, \frac{3}{4}}\]
Solución 5
\[x^2 = \frac{9}{25}\]
\[x=\boxed{\frac{-3}{5}, \frac{3}{5}}\]
Solución 6
\[x^2 = \frac{4}{49}\]
\[x=\boxed{\frac{-2}{7}, \frac{2}{7}}\]
Solución 7
\[x^2 + 1 = \frac{29}{4}\]
\[x=\boxed{\frac{-5}{2}, \frac{5}{2}}\]
Solución 8
\[x^2 + 1 = \frac{73}{9}\]
\[x=\boxed{\frac{-8}{3}, \frac{8}{3}}\]
Solución 9
\[x^2 + 1 = 5\]
\[x=\boxed{-2, 2}\]
Solución 10
\[4(x^2 + 1) = 53\]
\[x=\boxed{\frac{-7}{2}, \frac{7}{2}}\]
Solución 11
\[3(x^2 + 1) = \frac{58}{3}\]
\[x=\boxed{\frac{-7}{3}, \frac{7}{3}}\]
Solución 12
\[5(x^2 + 1) = \frac{145}{4}\]
\[x=\boxed{\frac{-5}{2}, \frac{5}{2}}\]
Back to Exercises