Solución 1
\[\log_{2} (2^{x}) = \boxed{x}\]
Solución 2
\[\log_{4} (4^{2x+5}) = \boxed{2x+5}\]
Solución 3
\[\log_{5} (x^{5}) = \boxed{\log_{5}(x^{5})}\]
Solución 4
\[\log_{5} (x^{5}+1) = \boxed{\log_{5} (x^{5}+1)}\]
Solución 5
\[\log_{5} (x^{5}+5) = \boxed{\log_{5} (x^{5}+5)}\]
Solución 6
\[\log_{5} (5^{x^{5}}) = \boxed{x^{5}}\]
Solución 7
\[\log_{5} (5^{x^{8}}) = \boxed{x^{8}}\]
Solución 8
\[\log_{5} (5^{x^{8}}+9) = \boxed{\log_{5} (5^{x^{8}}+9)}\]
Solución 9
\[\log_{5} (5^{x^{8}+9}) = \boxed{x^{8}+9}\]
Solución 10
\[\log_{5} (5^{x^{8}*9}) = \boxed{9x^{8}}\]
Solución 11
\[\log_{5} (5^{x^{8}}*9) = \boxed{\log_{5} (5^{x^{8}}*9)}\]
Solución 12
\[\log_{5} (5^{x^{8}}*5) = \boxed{(x^{8}+1)}\]
Solución 13
\[\log_{5} (5^{x^{8}}*25) = \boxed{(x^{8}+2)}\]
Back to Exercises